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Abstract— A lane-keeping controller for automobiles is
analyzed in this paper, with the consideration of time delay
in the feedback loop. Unstable periodic orbits are identified
inside the linearly stable domain of control gains. Based on
the amplitude of these unstable solutions, safe parameter
zones are identified, where the closed loop system is robust
against perturbations, i.e., where the basin of attraction of
the stable equilibrium is sufficiently large. Sensitivity to
perturbations in different regions of linearly stable control
gains is demonstrated by a series of real-vehicle exper-
iments. Finally, modifications of the control law are pro-
posed that lead to significant improvements in terms of the
robustness against perturbation for the controlled vehicle,
achieving global stability in the practical sense.

Index Terms— automated vehicles, path-following con-
trol, bifurcations, limit cycles, time delay

I. INTRODUCTION

Advanced driver assistance systems such as lane-keeping
and lane-changing controllers have the potential to signifi-
cantly reduce the number of road accidents caused by un-
intended lane departures [1]. In order to guarantee stable and
safe operation of these driving functions under all potential
circumstances, the corresponding steering controllers need
to be designed with a high degree of robustness against
perturbations.

One of the main bottlenecks of these controllers is the
presence of feedback delay in the control loop, which includes
effects such as sensor delay (arising from GPS as well as
from optical sensors), computation time of the estimation and
control algorithms, as well as delays arising from actuation. It
has been shown that these delay effects lead to a significant
decrease in the domain of stabilizing control gains, reduce
control performance and can even lead to instability [2]–[4].

On the other hand, nonlinear phenomena, such as sensitivity
to perturbations in the presence of limit cycles (periodic orbits)
are often not considered in the traditional methods of linear
control design [3]. In the literature, the nonlinear dynamics
of automobiles have mostly been analyzed with a focus on
the cornering behavior of the vehicle without control action
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[5]–[7], or with the consideration of a human driver [8]–
[10]. Understanding the nonlinear dynamics of the controlled
vehicle is also essential to design high-performance controllers
that are able to drive the vehicle at its handling limits [11]–
[14].

This paper presents the nonlinear analysis of a lane-keeping
controller with feedback delay, with an emphasis on ensuring
that the vehicle can safely handle unexpected disturbances
(e.g., hitting an ice patch) and highly dynamic maneuvers, such
as emergency obstacle avoidance. This is achieved by uncover-
ing unstable limit cycles around the linearly stable equilibrium
corresponding to the rectilinear motion. The amplitudes of the
unstable limit cycles are used to quantify a sensitivity of the
system to perturbations, i.e., whether perturbations cause the
vehicle to produce undesired oscillations even if the control
gains are selected from the linearly stable domain. Based on
our analysis, a so-called safe zone of control gains is identified
inside the linearly stable domain in the parameter space, where
the vehicle is robust against perturbations of given size, which
can be used as a guideline when tuning the controller.

The sensitivity of the controlled vehicle to perturbations is
also demonstrated in a series of real-vehicle measurements
performed on the Mcity test track of the University of Michi-
gan. The measurement results confirm the presence and the
approximate location of the safe zone of control gains. Finally,
we show that by shaping the input signal with an appropriate
wrapper function, the amplitude of the unstable limit cycles
can be greatly extended, leading to a significant expansion of
the basin of attraction of the equilibrium and achieving global
stability in the practical sense.

The rest of the paper is organized as follows: the model of
the controlled vehicle is presented in Section II. The nonlinear
analysis of the system is performed in Section III using
numerical continuation and the corresponding experimental
results are detailed in Section IV. In Section V, the nonlinear
control law with the wrapper function is presented, and the
improvements in the nonlinear performance of the vehicle are
demonstrated. The results are concluded in Section VI.

II. VEHICLE MODEL AND CONTROL DESIGN

The vehicle model considered in this study is the in-plane
bicycle model extended with steering dynamics, as shown
in Fig. 1. The center points of the front and rear axles are
denoted by F and R, respectively, while G marks the center
of mass. The generalized coordinates that describe the vehicle



configuration consist of the position xR and yR of point R,
the yaw angle ψ, and the steering angle γ. Assuming a front-
wheel drive vehicle, the wheel directional velocity component
of the front wheel is kept at a constant value V .

The geometrical parameters include the wheelbase l and
the distance b between points R and G. The vehicle mass is
denoted by m, while JG is the yaw moment of inertia about
the center of mass and JF denotes the mass moment of inertia
of the steering system. Deriving the equations of motion of
the vehicle model using the Appell-Gibbs method (see [15]
for details) leads to

ẋR = V
cosψ
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cos γ
+ σ
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where σ is the lateral velocity of point R, ω is the yaw rate of
the vehicle, and Ω is the steering rate. The generalized mass
matrix includes the elements

m11 =
m

cos2 γ
, (6)

m12 = m21 = m
(
b+ l tan2 γ

)
, (7)

m22 = JG + JF +m
(
b2 + l2 tan2 γ

)
, (8)

while the right-hand side of (5) consists of

f1 =
FF

cos γ
+ FR −

m

cos γ
(V − (l − b)ω sin γ)ω

+
m sin γ

cos3 γ
(V sin γ − σ − lω) Ω,

(9)

f2 =
FFl

cos γ
− m

cos γ
(bV + (l − b)σ sin γ)ω

+
ml sin γ

cos3 γ
(V sin γ − σ − lω) Ω +MF +MR,

(10)

f3 = MF +MS. (11)

The lateral tire forces FF and FR, as well as the self-
aligning moments MF and MR are considered as functions
of the side-slip angles

tanαF = − σ + lω

V cos γ
+ tan γ, (12)

tanαR =
V cos γ

−V + (σ + lω) sin γ
, (13)

and we use the nonlinear brush tire model detailed in [15]. The
front wheels are steered by the steering torque MS, which is
generated by the steering motor.

In order to ensure stable path following, a higher-level
controller is designed in this paper to follow the straight-line
reference path along the x–axis. The desired steering angle
γdes is calculated using the feedback of the lateral position
yR and the course angle θ of the rear axle center point R:

γdes(t) = −kyyR(t− τ)− kθθ(t− τ). (14)

Fig. 1. Bicycle model with steering dynamics.

TABLE I
VEHICLE PARAMETERS

Parameter Value
Vehicle wheelbase (l) 2.57 m
Distance between rear axle
and center of gravity (b) 1.54 m

Vehicle mass (m) 1770 kg
Yaw moment of inertia (JG) 1343 kgm2

Steering system moment of inertia (JF) 0.25 kgm2

Lower-level steering control
proportional gain (kp) 640 Nm

Lower-level derivative gain (kd) 8 Nms
Lower-level integral gain (ki) 40 Nm/s
Longitudinal velocity (V ) 15 m/s
Total time delay in control loop (τ ) 0.7 s

Here τ is the overall feedback delay, incorporating the delays
in sensing, data processing and actuation. The course angle
(heading angle of point R) is calculated as θ = ψ − αR, and
ky and kθ are the control gains. In case of varying path
curvature, the tracking performance of this simple controller
can be improved by adding a feedforward term, as shown in
[16]. To realize the desired steering angle, the steering torque
MS is generated according to the lower-level PID controller

MS = −kp
(
γ − γdes

)
− kdγ̇ − kiz, (15)

where kp, kd and ki are the lower-level control gains and

ż = γ − γdes. (16)

The nonlinear system (1)-(16) describes the dynamics of
the controlled vehicle. In the next section we analyze the
linear and nonlinear dynamics of this system and compute the
unstable limit cycles which determine the region of attraction
of the equilibrium (rectilinear motion).

III. NONLINEAR ANALYSIS
The linear stability of the controlled vehicle can be ensured

by analyzing the characteristic equation of the closed-loop
system linearized around the equilibrium i.e., the rectilinear
motion. Considering that the vehicle is moving along the x–
axis, the equilibrium is given by xR = V t, yR ≡ 0, ψ ≡ 0,
γ ≡ 0, σ ≡ 0, ω ≡ 0, Ω ≡ 0, z ≡ 0. Here we briefly describe
the linear stability analysis while more details can be found
in [15] and [3]. Because of the time delay τ in the control



law in (14), the characteristic equation contains e−sτ beside
the polynomials of poles s. For such transcendental equations,
among other methods, the D-subdivision [17] can be used to
determine the linear stability boundaries. Fig. 3(c) depicts the
stability boundary (black curve) in the plane of the two higher-
level control gains kθ and ky . The rectilinear motion is linearly
stable in the union of the gray shaded and colored domains
and unstable otherwise.

However, the linear stability of the system only provides
information about the local dynamics near the equilibrium. In
order to unveil what kinds of dynamics can happen farther
from the equilibrium, the methods of nonlinear analysis are
used in the remainder of this section. In particular, we want
to ensure that when the equilibrium is stable in the linear
sense, its basin of attraction is large enough in order to enable
the vehicle to safely handle larger perturbations, such as the
appearance of an unexpected obstacle.

Fig. 2. (a) Phase portrait with a stable equilibrium (green) and an
unstable limit cycle (red) in the (yR, θ) plane. (b) Introduction of the
LyR,θ norm.

We found that the linear stability loss corresponds to sub-
critical Hopf bifurcations in the nonlinear system [18]. This
means that even when the equilibrium is linearly stable, it
is surrounded by an unstable limit cycle (periodic orbit); see
the phase portrait in the (yR, θ) plane in Fig. 2(a). The basin
of attraction of the stable equilibrium is bounded by this
unstable limit cycle (in the infinite dimensional state space).
Thus, large enough perturbations may push the system outside
the limit cycle and make it diverge from the locally stable
equilibrium. That is, the size of the limit cycle corresponds to
the sensitivity of the controlled system against perturbations.
To quantify this sensitivity, one can characterize the size of
the limit cycle using different norms. A meaningful choice is
to use the amplitude yamp

R of the limit cycle. While this has a
clear physical interpretation, it does not capture the sensitivity
against the perturbations in other states. Hence, we introduce
the dimensionless custom norm

LyR,θ =

√(
yR
y0

)2

+

(
θ

θ0

)2

. (17)

We choose y0 = 1 m and θ0 = 0.08 rad (determined based
on the average value of θamp/yamp

R within the domain of
stable control gains). Using this norm, we can approximate the
limit cycle as a circle in the dimensionless phase portrait, see
Fig. 2(b), and characterize the sensitivity of the system against
the perturbations in the combination of the lateral position yR
and the course angle θ.

To investigate how the basin of attraction changes while
varying the control gains we compute the limit cycle using
numerical collocation and follow the branch of the limit cycle
using numerical continuation, namely, the software, DDE-
Biftool [19]. The bifurcation diagrams in Fig. 3(a) and (b)
depict the amplitude of the limit cycle in the lateral position
yR and in the LyR,θ norm as the control gain kθ is varied,
for the vehicle parameters listed in Table I. Observe that the
branch of the unstable limit cycle emerges from the Hopf
bifurcation points which mark the linear stability boundary
of the equilibrium. The amplitude of the limit cycle, and
correspondingly the size of the basin of attraction of the
equilibrium, changes with the parameter kθ.

The results of the nonlinear analysis are summarized in
Fig. 3(c), where the colormap indicates the sensitivity of
the controlled vehicle to perturbations across the domain of
linearly stable control gain combinations. A region of safe
zone of control gains is also identified (indicated by gray
shading), where the limit cycle amplitudes in terms of yR
do not fall below 2 meters, indicating that the vehicle can
safely handle larger perturbations. Observe that a large part of
the linearly stable parameter domain falls outside of this safe
zone. In these cases the system can leave the basin of attraction
of the stable equilibrium for sufficiently large perturbations,
which is a severe safety issue in practice.

IV. EXPERIMENTAL VALIDATION

To validate the results of the bifurcation analysis, a series
of real-vehicle experiments were performed at the Mcity test
track of the University of Michigan. The test vehicle (shown in
Fig. 3(d) and detailed in [15]) was equipped with a GPS device
mounted at the rear axle center point R. The experiments
were aimed at demonstrating the feasibility of motion control
relying on vehicle-to-everything (V2X) communication only,
in cases when the onboard sensors fail [15]. This means that
the applied control algorithms must handle less frequent data
transfer and less accurate sensor data. In case of the GPS
device used in the experiments, the satellite data was upgraded
only every 1 sec (with state estimations in-between) with an
accuracy of ≈0.7 m.

Experiments were performed for different combinations of
the higher-level control gains, where the vehicle aimed to
follow the lane centerline of a straight segment of the test
track, relying on GPS data. For each control gain combination
in Fig. 3(e), test runs were carried out with different initial
lateral positions and orientations of the vehicle. Depending on
the behavior of the vehicle, the individual measurement points
were labelled as either stable (green circles), bistable (orange
squares) or unstable (red crosses). For the gain combinations
labelled as stable, the lane-keeping controller was working
as intended in all test runs, with decaying oscillations. In
the measurement points labelled as bistable, solutions with
increasing and decreasing lateral oscillations were both ob-
served. Finally, in the points labelled as unstable, the vehicle
was not able to successfully follow the lane centerline in any
of the test runs. Comparing the results in panels (c) and (e) of
Fig. 3 shows that consistently stable measurements regardless



Fig. 3. (a)-(b) Bifurcation diagrams of the controlled vehicle. (c) Stability chart where the coloring refers to the unstable limit cycle amplitudes. (d)
Vehicle and V2X measurement setup used in the experiments – 1: host computer, 2: network cable, 3: electronic control unit, 4: power cable, 5:
antennae. (e) Experimental results.

of initial perturbations were achieved using control gains that
are approximately located in the theoretically determined safe
zone.

Figure 4 shows bifurcation diagrams comparing the the-
oretical and the experimental results while varying the two
control gains. Good correspondence can be found between
the theoretical and the experimental results: apart from a few
outliers, it can be clearly seen that smaller control gains can
handle larger perturbations better, and there is both a lower
and an upper limit of the stable domain in terms of kθ.

The measured vehicle trajectories are plotted in Fig. 5 using
the control gains in points A, B, C and D in Fig. 3(e). The
panels in the left column show the trajectories in the plane
of the lateral position and the course angle, along with the
corresponding unstable limit cycles computed based on the
model. The panels on the right show the vehicle position
along the test track. It can be seen that depending on the
initial conditions, the same control gains can lead to stable
path following or instability. It has to be kept in mind though,
that the actual state space of the system includes the rest of
the state variables, as well as the infinite dimensional initial
functions too. Therefore the limit cycles in these sections of
the state space do not exactly correspond to the boundaries of
the basin of attraction of the stable equilibrium.

V. EXTENSION OF THE SAFE ZONE

The theoretical and experimental investigations above high-
light that nonlinearity in the dynamics leads to unwanted
performance when using controllers designed based on the
linearized dynamics. To improve the nonlinear behavior of the
controlled vehicle, additional nonlinearity can be introduced
in the control law, which, once appropriately chosen, may
compensate the negative effects of the nonlinearity in the

dynamics. Here we propose a nonlinear extension of the
control law (14) and demonstrate that this can increase the safe
zone of stabilizing control gains and result in global stability
in the practical sense.

In particular, the control law (14) is wrapped with the
continuous wrapper function:

g(γdes) =
2γsat
π

arctan

(
π

2γsat
γdes

)
, (18)

see [16]. As shown in Fig. 6, the wrapper function has the
gradient 1 at γdes = 0, that is, it does not influence the linear
stablity of the equilibrium. Also, it saturates at ±γsat as
γdes →∞. Notice, however, that smaller steering angles are
also affected. This wrapper function allows the use of larger
control gains, which leads to better tracking performance at
small errors, while the gains are gradually reduced for large
errors in order to ”soften” the response of the controller.

We present the results of the bifurcation analysis of system
(1)-(16) with the wrapper function (18) for different values
of the saturation limit γsat in Fig. 7(a). One may observe
that decreasing γsat leads to a sharp increase in the limit
cycle amplitudes and consequently the expansion of the basin
of attraction of the stable equilibrium. This is quantified in
Fig. 7(b) by plotting the amplitude of the limit cycle as a
function of γsat for the gain combination ky = 0.032 m−1,
kθ = 1. As the same trend is observed for other gain com-
binations, the safe zone expands in the parameter space. For
small enough value γsat the branch of the limit cycle breaks
and there exist no unstable limit cycle within the majority
of the linearly stable domain. As a result, the safe zone
covers almost the entire stable domain. This means that the
previously shown strong sensitivity of the closed-loop system
to perturbations can be successfully avoided by applying the
proposed nonlinear control law.



Fig. 4. Bifurcation diagrams comparing the theoretical and the experimental results. The vertical axis corresponds to the norm defined in (17).

Fig. 5. Stable and unstable measured vehicle trajectories and the
corresponding theoretical unstable limit cycles.

Fig. 6. The continuous wrapper function g(γdes) in (18).

Fig. 7. (a) Bifurcation diagram using the linear (black) and the nonlinear
(blue) control law with different saturation levels γsat. (b) Limit cycle
amplitude as a function of the saturation parameter γsat.

Fig. 8. Numerical simulations using the control gains and initial
conditions of point A in Fig. 5.

In order to illustrate the performance of the nonlinear
controller, Fig. 8 shows a series of numerical simulations using
the control gains and initial conditions of the measurements
in point A in Fig. 5. Since the control gains are selected
from the linearly stable region, the small initial perturbation



around the equilibrium lead to stable straight-line motion,
regardless of the controller used. However, the larger initial
perturbation causes the vehicle to spin out when the original,
linear control law is used (panels (a)–(d)), similar to what was
observed in the measurements. Parts of the simulated unstable
trajectory where the lateral acceleration becomes exceedingly
large are denoted by gray, indicating that these are beyond
the capabilities of the vehicle model used. On the other hand,
when the nonlinear control law is applied (panels (e)–(h)),
the vehicle is able to safely steer itself towards the reference
path, despite the large initial course angle. Here we used
the saturation limit γsat = 15 degrees. Notice that, since the
wrapper function (18) affects the control actions for smaller
desired steering angles too, the actual steering angle remained
below 10 degrees during the whole simulation; see Fig. 8(g).

In order to show that despite the seemingly tight limitations
on the steering angle, the nonlinear control law still allows
the execution of highly dynamic vehicle maneuvers, one
can calculate the lateral acceleration of the rear axle center
point R as alatR = −ẍR sinψ + ÿR cosψ. Using the equations
of motion of the vehicle model in Section II, the lateral
acceleration reads

alatR = ω

(
V

cos γ
− (σ + lω) tan γ

)
+ σ̇. (19)

This is plotted in Fig. 8(d) when using the linear control law
and in Fig. 8(h) when using the nonlinear control law. In the
linear case the acceleration becomes exceedingly large, while
in the nonlinear case its magnitude reaches around 4 m/s2,
which is executable by most production vehicles.

VI. CONCLUSION

Nonlinear analysis of the lane-keeping control of automated
vehicles was performed in this paper. Using numerical collo-
cation and continuation, unstable limit cycles have been iden-
tified and traced in the linearly stable domain of control gains.
The oscillation amplitude of these periodic orbits around the
equilibrium of stable path following was used as an indicator
of the robustness of the controller against perturbations. Based
on the results of the nonlinear analysis, a safe zone of control
gains was identified, where the controlled vehicle was able to
safely handle larger perturbations.

The results have been verified using a series of real-vehicle
experiments on a test track. The measurement results con-
firmed the importance of taking into account the time delay as
well as the nonlinear effects in the control design. Consistently
stable measurements were only achieved in the region of the
stable domain where the amplitude of the unstable limit cycle
was sufficiently large. Outside of this region the system was
demonstrated to be more susceptible to perturbations, which
may lead to serious safety hazards in practice. To overcome
these limitations, a nonlinear control law was proposed, which
led to a significant increase of the amplitude of the unstable
limit cycles and improved the robustness of the closed-loop
system against perturbations. Therefore significantly better
control performance was achieved when executing dynamic
maneuvers.

The correspondence between the theoretical and experimen-
tal results could potentially be improved by using a higher
fidelity vehicle model (e.g., a four-wheel model). In addition,
the effects of external disturbances and road curvature will
also be considered in future research.
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